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TSF Model
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H: forecasting horizon

Key Idea

Takens’ Theorem: For a generic smooth dynamical system 
(Φ: 	𝑀 → 𝑀),	the delay embedding:

Empirical Dynamical Modeling (EDM): a computational model that builds 
on Takens’ theorem for time series forecasting 
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∑,-)./".𝑤, ⋅ 𝑦0!"#$, where	 𝑤, = 𝑘()𝑦!, )𝑦0!) with 𝑘 the kernel in Step 2

Motivation Prior Work: Empirical Dynamical Modeling (EDM)

Our Work: DeepEDM

Experiments and Results

TL;DR: With observed 1D time series 𝑦,	its time delayed 
version has similar topology as the underlying state 𝑥, and 
thus, can be used to “reconstruct” the dynamics.

DeepEDM = deep learning + dynamical system modeling (EDM)

hidden dynamics Φ(x1)

𝑥$") = Φ(x1)

𝑦$ = ℎ 𝑥$ + 𝜖

𝑦&
ℎ: observation function
𝜖: measurement noise

Real world time series from hidden dynamical systems

Deep learning method have dominated TSF, yet they often 
ignore underlying dynamics.

Modeling hidden dynamics from just the observed data is 
challenging, but Takens’ Theorem offers a solution.

Metrics: Prediction error (MSE, MAE)

Real-world Benchmarks: Stocks, 
Health, Traffic, Electricity, M4, etc. (8 in total)

Baselines: Koopa, iTransformer, FITS, 
PatchTST, Dlinear, etc. (11 in total)

Synthetic Datasets: Chaotic and 
non-Chaotic Lorenz, Rossler Systems, 
with varied levels of Gaussian noise

State-of-the-art performance on synesthetic and real-world benchmarks, 
across many settings, including fixed lookback window, lookback window 
searching, varied forecasting horizons, input noise, and unseen series

Results on Real-world BenchmarksResults on Synthetic Datasets

Robustness to noise
(Synthetic data with varied noise levels)
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Generalization to Unseen Series
(real-world data with unseen series)

(ℎ(𝑥), ℎ(Φ(𝑥)), … , ℎ(Φ!"#(𝑥))), 
is an embedding of the manifold 𝑀	into ℝ! when	𝑚 > 2𝑑, 
where 𝑑 is the dimension of 𝑀, and ℎ: (𝑀 → ℝ)	is a smooth 
observation function. 

• Takens’ theorem assumes noise-free measurements, 
yet real-world data are almost always noisy.

• How can we design learning-based models to leverage 
Takens’ theorem for time series forecasting?

Key Challenges:

• A separate model for each time series
• Designed for univariate time series

Relationship to Transformers: 
DeepEDM = Transformer (with input patching and a 
variant of self-attention)

Input: univariate time series 𝑦2:!  Output: predictions of 𝑦!"#$	 ∀	Δ𝑡 ∈ [1, 𝐻] (assuming 𝐻 ≪ 𝑇)
1. Time-delay the input 𝑦2:!	by 2𝑑 + 1 steps as )𝑦2:!
2. Find 2𝑑 + 2 nearest neighbors {𝑦0!} for )𝑦! using a kernel function 𝑘 in the time delayed space 
3. Interpolation using nearest neighbors (i.e., Nadaraya-Watson estimator), following

• Limited forecasting horizon
• Sensitive to input noise

Input: Each channel 𝑦2:! of a time series
Output: predictions of 𝑦!"#$	 ∀	Δ𝑡 ∈ [1, 𝐻] 
(𝐻 may be larger than 𝑇)
① Initial prediction: 𝑦!:!"4

5 = 𝑓(𝑦):!)
② Time delay and encoding:
     )𝑦):!"4 = TimeDelay 𝑦):!, 𝑦!:!"4
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     𝑧):!"4 = Encoder( )𝑦):!"4)
③ Kernel regression:
     P𝑦$%"#$ =

)
∑&'() 6(8&,8&%)

∑$-)! 𝑘(𝑧$, 𝑧$;) ⋅ )𝑦$"#$

④ Prediction decoding: 
     𝑦!"):!"4%&'( = Decoder(P𝑦!"):!"4)
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Architecture (EDM blocks)

Conclusion

Dynamical System Modeling + Deep Learning 
= More Accurate Time Series Forecasting?

Key Design
• A single model shared across time series
• Channel-wise modeling for multivariate series
• Cascading from initial prediction ① to allow 

long-term forecasting
• Time delay ② + kernel regression ③ = EDM
• Neighbor-based interpolation -> learnable 

kernel regression ③ for noise robustness
• Encoding-decoding architecture ②, ④ for 

improved performance

A novel framework (DeepEDM) that integrates deep learning and 
dynamical system modeling 
DeepEDM builds on Takens’ theorem, overcomes key EDM limitations, 
and sheds light on the success of prior Transformer models
State-of-the-art performance on real-world and synthetic benchmarks, 
with robust to noise and generalization to unseen time series


