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Motivation Prior Work: Empirical Dynamical Modeling (EDM) Experiments and Results
Time Series Forecasting (TSF): Predicting future values Empirical Dynamical Modeling (EDM): a computational model that builds Synthetic Datasets: Chaotic and Real-world Benchmarks: Stocks,
with historical data on Takens’ theorem for time series forecasting non-Chaotic Lorenz, Rossler Systems, Health, Traffic, Electricity, M4, etc. (8 in total)
L _ . L _ with varied levels of Gaussian noise . _
NVWVA —»  TSF Model => ’\/V\/‘\/V‘ Input: univariate time series y,.;  Output: predictions of y,, V At € [1,H] (assuming H < T) M Baselines: Koopa, iTransformer, FITS,
Voor VT 1. Time-delay the input y,.; by 2d + 1 steps as y,.1 © AN |- PatchTST, Dlinear, etc. (11 in total)
T lookback window size H: forecasting horizon 2. Find 2d + 2 nearest neighbors {yy.} for 7 using a kernel function k in the time delayed space ] o
Real d 4 ot h - 3. Interpolation using nearest neighbors (i.e., Nadaraya-Watson estimator), following Metrics: Prediction error (MSE, MAE)
eal world time series from hidden dynamica fycstems yPred _ sziz — S22 Wi Ygeae, Where w; = k(9r, 9y,) with k the kernel in Step 2
Xer1 = P(Xy) l _ _ o . . Results on Synthetic Datasets Results on Real-world Benchmarks
y, = h(x,) + € ® A separate model for each time series ® Limited forecasting horizon .|
1: observation function ® Designed for univariate time series ® Sensitive to input noise 120 "
hidden dynamics ®(x;) Ve €: measurement noise Our Work: D =DM §1OO £2s,
L] = 80 ‘S 20
Deep learning method have dominated TSF, yet they often SOy B 5. 5
ignore underlying dynamics. DeepEDM = deep learning + dynamical system modeling (EDM) 2 ;:
. . . Input: Each channel y,.; of a time series x _
Dynamical System Modeling + Deep Learning Output: predictions of yrac ¥ At € [1LH] A A\-NA + NSO I 2 5/
— . . . ) ~utput e y soft | | . ol
= More Accurate Time Series Forecasting~ (H may be larger than T) o Nearest Neitibors "ol Ko S DechEDNCyceNet FITS Trans. Koopa PatcsT
" _— Observed Data 2l etho etho
Key Idea D Infial preciction: 7y = /017 ma R : . - _
@ Time delay and encoding: 1 y : ) ForleF::agstvia. Robustness to noise Generalization to Unseen Series
. . . . . ernel Regression : : : : . :
Modeling hidden dynamics from just the observed data is Vyren = TimeDelaX([ynT,yq'?;ﬂHD _ |7 (Synt:fzﬁedata W'chdV:rN'ed roIse HIZY fls) (rea"VX(? fld data with unseen series)
challenging, but Takens’ Theorem offers a solution. Zy.r+n = Encoder(Yy.r+n) - § — o SF i
? : i : \ é Z ecoder % o ilfl'(;gsjformer I
Takens’ Theorem: For a generic smooth dynamical system @ Kemel regression: ) ' i l Zoo 5 =
. v 7 = _ Y \ \\\ | ik it b 9 ;
(d: M - M), the delay embedding: Ve'sat = 5T Kz 20=1 K20 20) - Jevar ' Latont A AVAVS VAVATE [N s S S S S S S S R R A ézz
m—1 @ Prediction decoding: Time Delayed Projection Forecast (y?) " P P o £
(h(X), h(CD (X)); ey h((b (X))), Pred _ Embeddings () w ey T T 5 15
: beddi fth ifold M into R™ wh 2d Yriir+y = Decoder(Yri1.7+1) 2 T s .8 o
is an embedding of the manifo into when m > 2d, : - e
I g I . I ArChlteCture (EDM bIOCkS) Key DeSIgn ' Predii:tion Llesngth o Predisction Llér,ngth o Predi_::tion Llér’ngth * °
where d is the dimension of M, and h: (M — R) is a smooth AN Y7o (Forecast e Asingl del shared . : 0 DeepEDM PatchTST  Koopa firansformer
observation function. ) G ipe single model shared across time series Method
” . ® Channel-wise modeling for multivariate series .
S e : : . : Decoder | 9 State-of-the-art performance on synesthetic and real-world benchmarks,
TL;DR: With observed 1D time series y, its time delayed . ! e C el initial prediction @ to all . : . ) ) :
: e : ! {1 E Bz ascading from initial prediction (U 10 allow across many settings, including fixed lookback window, lookback window
version has similar topology as the underlying state x, and | | long-term forecasting searching, varied forecasting horizons, input noise, and unseen series
11 7 - I 2:T‘W - -’
thus, can be used to “reconstruct” the dynamics. ! 2. ) ! _ . 9, 9 , NP ’
| i-0s |1 ® Time delay @ + kernel regression @ = EDM _
Key Challenges: 1| emaraesionw=k(45) |1 ¢ Neighbor-based interpolation -> learnable Conclusion
I fn : - I I
* Takens’ theorem assumes noise-free measurements, ' oz | ! kernel regression @ for noise robustness A novel framework (DeepEDM) that integrates deep learning and
yet real-world data are almost always noisy. | Encoder . ®* Encoding-decoding architecture @, @ for dynamical system modeling
1 - | . . : L )
®* How can we design learning-based models to leverage = R— improved performance DeepEDM builds on Takens’ theorem, overcomes key EDM limitations,
Takens’ theorem for time series forecasting? e Relationship to Transformers: and sheds light on the success of prior Transformer models
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_ _ _ _ N YR DeepEDM = Transformer (with input patching and a State-of-the-art performance on real-world and synthetic benchmarks,
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