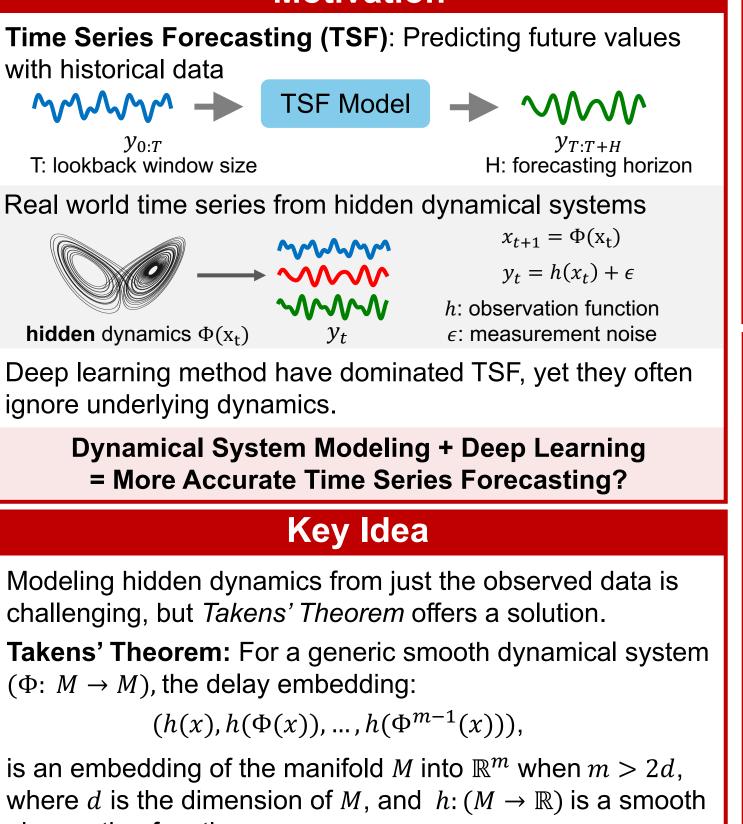


LETS Forecast: Learning Embedology for Time Series Forecasting

Abrar Majeedi, Viswanatha Reddy Gajjala, Srinath Namburi, Nada Elkordi, Yin Li University of Wisconsin-Madison

Motivation



observation function. **TL;DR**: With observed 1D time series *y*, its time delayed

version has similar topology as the underlying state x, and thus, can be used to "reconstruct" the dynamics.

Key Challenges:

- Takens' theorem assumes *noise-free measurements*, yet real-world data are almost always noisy.
- How can we design *learning-based models* to leverage Takens' theorem for time series forecasting?

Work was partially supported by National Science Foundation under Grant No. CNS 2333491, and by the Army Research Lab under contract number W911NF-2020221.

Prior Work: Empirical Dynamical Modeling (EDM)

Empirical Dynamical Modeling (EDM): a computational model that builds on Takens' theorem for time series forecasting

- <u>Input</u>: univariate time series $y_{0:T}$ 1. Time-delay the input $y_{0:T}$ by 2d + 1 steps as $\hat{y}_{0:T}$

 $y_{T+\Delta t}^{\text{Pred}} = \frac{1}{\sum_{i=1}^{2d+2} w_i} \sum_{i=1}^{2d+2} w_i \cdot y_{N_i+\Delta t}$, where $w_i = k(\hat{y}_T, \hat{y}_{N_i})$ with k the kernel in Step 2

- A separate model for each time series Limited forecasting horizon
- Designed for univariate time series

DeepEDM = deep learning + dynamical system modeling (EDM)

Input: Each channel $y_{0:T}$ of a time series <u>Output</u>: predictions of $y_{T+\Delta t} \forall \Delta t \in [1, H]$ (H may be larger than T)

- ① Initial prediction: $y_{T:T+H}^p = f(y_{1:T})$
- ② Time delay and encoding: $\hat{y}_{1:T+H} = \text{TimeDelay}([y_{1:T}, y_{T:T+H}^p])$

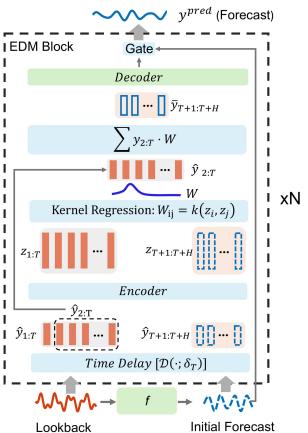
$$z_{1:T+H} = \text{Encoder}(\hat{y}_{1:T+H})$$

③ Kernel regression:

$$\bar{y}_{t'+\Delta t} = \frac{1}{\sum_{t=1}^{T} k(z_{t}, z_{t'})} \sum_{t=1}^{T} k(z_{t}, z_{t'}) \cdot \hat{y}_{t+\Delta t}$$

④ Prediction decoding: $y_{T+1:T+H}^{\text{Pred}} = \text{Decoder}(\bar{y}_{T+1:T+H})$

Architecture (EDM blocks)



- A single model shared across time series
- Channel-wise modeling for multivariate series
- Cascading from initial prediction ① to allow long-term forecasting
- kernel regression ③ for noise robustness
- Encoding-decoding architecture 2, 4 for improved performance

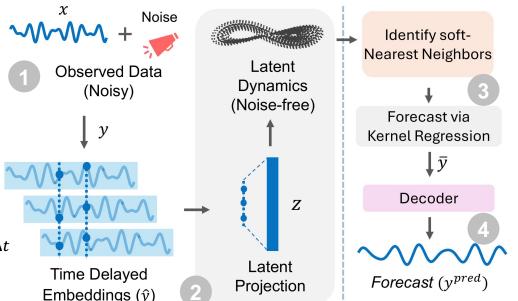
Relationship to Transformers:

<u>Output</u>: predictions of $y_{T+\Delta t} \forall \Delta t \in [1, H]$ (assuming $H \ll T$)

2. Find 2d + 2 nearest neighbors $\{y_{N_i}\}$ for \hat{y}_T using a kernel function k in the time delayed space 3. Interpolation using nearest neighbors (i.e., Nadaraya-Watson estimator), following

• Sensitive to input noise

Our Work: DeepEDM

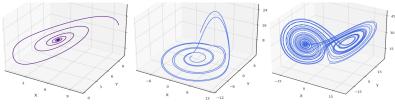


Key Design

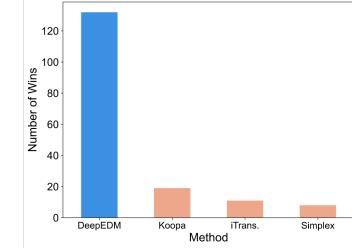
- Time delay 2 + kernel regression 3 = EDM
- Neighbor-based interpolation -> learnable
- DeepEDM = Transformer (with input patching and a variant of self-attention)

Experiments and Results Real-world Benchmarks: Stocks, Health, Traffic, Electricity, M4, etc. (8 in total) Baselines: Koopa, iTransformer, FITS, PatchTST, Dlinear, etc. (11 in total) **Metrics:** Prediction error (MSE, MAE) **Results on Real-world Benchmarks** un 25 ∭ 25 € 20 15 **Generalization to Unseen Series** (real-world data with unseen series) ≥ 25 ັງ ອີ 20 j 15 DeepEDM PatchTST Koopa iTransforme Conclusion DeepEDM builds on Takens' theorem, overcomes key EDM limitations,

Synthetic Datasets: Chaotic and non-Chaotic Lorenz, Rossler Systems, with varied levels of Gaussian noise

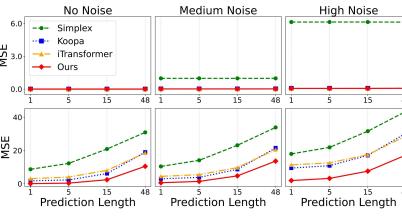


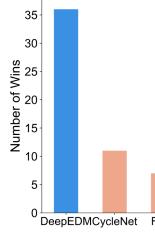
Results on Synthetic Datasets

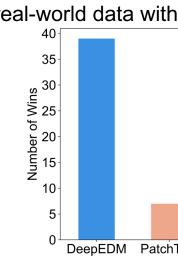


Robustness to noise

(Synthetic data with varied noise levels)







State-of-the-art performance on synesthetic and real-world benchmarks, across many settings, including fixed lookback window, lookback window searching, varied forecasting horizons, input noise, and unseen series

- A novel framework (DeepEDM) that integrates deep learning and dynamical system modeling
- and sheds light on the success of prior Transformer models
- State-of-the-art performance on real-world and synthetic benchmarks, with robust to noise and generalization to unseen time series

